Chapter 20 – Revision of Chapters 1-19

Solutions to 20A Short-answer questions

1 $2x + 3(4 - x) = 8$ $2x + 12 - 3x = 8$ $-x = -4$ $x = 4$.

2
$$
\frac{at+b}{ct+d} = 2
$$

at + b = 2ct + 2d

$$
(a-2c)t = 2d - b
$$

$$
t = \frac{2d-b}{a-2c}.
$$

$$
3 \quad \frac{4x}{3} - 4 \le 2x - 3
$$

$$
-4 + 3 \le 2x - \frac{4x}{3}
$$

$$
-1 \le \frac{2x}{3}
$$

$$
-3 \le 2x
$$

$$
x \ge -\frac{3}{2}.
$$

- 4 a For *x* − *y* to be as small as possible choose the smallest possible value of *x* and the largest possible value of *y*. Thus take $x = -4$ and $y = 8$. Hence the smallest value of $x - y$ is −12.
	- **b** The largest possible value of $\frac{x}{x}$ *y* is achieved by making *x* as large as possible and *y* as small as possible. Thus take $x = 6$ and $y = 2$. Hence the largest value of $\frac{x}{x}$ *y* is 3.
- c The largest possible value of $x^2 + y^2$ is obtained by choosing values of the largest magnitude for both *x* and *y*. Thus take $x = 6$ and $y = 8$. Hence the largest possible value of $x^2 + y^2$ is 100.
- 5 Let *x* be the number of the first type book and *y* be the number of the other type of book. There is a total of 20 books. So $x + y = 20$ (1) There is total cost of \$720. So $72x + 24y = 720$ (2) Multiply equation (1) by 24. $24x + 24y = 480$ (3) Subtract equation (3) from equation (2). $48x = 240$ $x = 5$. Hence $x = 5$ and $y = 15$.

There were 5 of one type of book and 15 of the other.

$$
6 \quad \frac{1-5x}{3} \ge -12
$$
\n
$$
1-5x \ge -36
$$
\n
$$
-5x \ge -37
$$
\n
$$
37
$$

$$
x \leq \frac{37}{5}
$$

7
$$
a = \frac{y^2 - xz}{10}
$$

When $x = -5$, $y = 7$ and $z = 6$,

$$
a = \frac{7^2 + 5 \times 6}{10}
$$

$$
= \frac{79}{10}.
$$

8 a Midpoint
$$
M(xy): x = \frac{8+a}{2}
$$
 and
 $y = \frac{14+b}{2}$

- **b** If $(5, 10)$ is the midpoint, 8 + *a* 2 $= 5$ and $\frac{14 + b}{2}$ 2 $= 10$. Hence $a \equiv 2$ and $b = 6$.
- ⁹ ^a The line passes through *^A*(−2, 6) and *^B*(10, 15). Using the form $y - y_1 = m(x - x_1)$, $m =$ 15 − 6 $10 - (-2)$ = 9 12 = 3 4 The equation is thus, $y - 6 = \frac{3}{4}$ 4 $(x + 2)$ Simplifying, $4y - 24 = 3x + 6$ $4y - 3x = 30$.

$$
x = \frac{-7 + 11}{2} \text{ and } y = \frac{6 + (-5)}{2}
$$

The midpoint is $M(2, \frac{1}{2})$.

b The distance between *A* and *B*

$$
= \sqrt{(11 - (-7)) + (-5 - 6)}
$$

= $\sqrt{18^2 + 11^2}$
= $\sqrt{324 + 121}$
= $\sqrt{445}$

- c The equation of *AB*. Gradient, *m* = $-5 - 6$ $11 - (-7)$ $=-\frac{11}{10}$ 18 . Using the form $y - y_1 = m(x - x_1)$. $y - 6 = -\frac{11}{18}$ 18 $(x + 7)$ Simplifying, $18y - 108 = -11x - 77$. $18y + 11x = 31$.
- d The gradient of a line perpendicular to line *AB* is $\frac{18}{11}$. 11 1 The midpoint of *AB* is $M(2,$. **b** When $x = 0, y = \frac{15}{2}$ 2 Using the form $y - y_1 = m(x - x_1)$. 2 When $y = 0$, $x = -10$ $y-\frac{1}{2}$ 18 (*x* − 2) = By Pythagoras's theorem, 2 11 s $\int_{0}^{2} 22y - 11 = 36x - 72$ $(-10-0)^2 + (0-\frac{15}{2})$ the length of $PQ =$ 2 $22y - 36x + 61 = 0.$ ¹ $100 + \left(-\frac{225}{4}\right)$ \backslash = 4 11 $\sqrt{625}$ = 4 (2.6) 25 = 2 . $y = -x^2 + 4x + 2$ $2+\sqrt{6}$

10 **a** $A = (-7, 6)$ and $B = (11, -5)$. The midpoint $M(x, y)$ of AB has coordinates,

¹² A parabola has turning point (2, [−]6). It has equation of the form $y = k(x - 2)^2 - 6.$ It passes through the point (6, 12). Hence, $12 = k(4)^{2} - 6$ 18 = 16*k* $k =$ 9 8

Hence the equation is $y =$ 9 8 $(x-2)^2-6$.

13 Let $P(x) = ax^3 + 4x^2 + 3$. It has remainder 3 when divided by $x - 2$. The remainder theorem gives us that: $P(2) = 3.$ That is, $3 = 8a + 16 + 3$. Hence $a = -2$.

a The length of the wire is 6000 cm. We have: $4 \times 5x + 4 \times 4x + 4w = 6000$

$$
5x + 4x + w = 1500
$$

$$
w=1500-9x.
$$

b Let V cm³ be the volume of cuboid. $V = 5x \times 4x \times x$

$$
= 20x^2(1500 - 9x)
$$

c We have $0 \le x \le \frac{500}{2}$ 3 since *^w* ⁼ ¹⁵⁰⁰ [−] ⁹*^x* > 0.

$$
\mathbf{d}%
$$

If
$$
x = 100
$$
, $V = 20 \times 100^2 (1500 - 9 \times 100)$
= 200 000 × 600
= 120 000 000 cm³

15 Let *n* = number of square line tiles
\nLet *l* = side length of the tile used
\n
$$
n \propto \frac{1}{l^2}
$$

\n $n = \frac{k}{l^2}$
\nWhen $n = 900$, $l = 0.5$
\n $900 = \frac{k}{0.5^2}$
\n $k = 225$
\nThus, the number of tiles with side
\nlength 0.75 m required is $\frac{225}{0.75^2} = 400$.

- **16** a Probability of both red = $\frac{4}{9}$ 9 $\times \frac{4}{2}$ 9 = 16 81 .
	- **b** Probability of both red = 4 9 $\times \frac{7}{15}$ 17 = 28 $\frac{16}{153}$.

Sample space $= \{3, 5, 7, 9, 11\}$
The outcomes are not equally likely. Pr(divisible by 3) = 1 3 .

- 18 There are six letters and three vowels.
	- a The probability that the letter withdrawn is a vowel $=$ 1 2 .
- **b** The probability that the letter is a vowel is $\frac{1}{2}$ 3 .
- 19 This can be done simply by considering the cases. SSF or SFF are the only two

possibilities.

The probability of fruit on Wednesday

$$
= 0.4 \times 0.6 + 0.6 \times 0.3
$$

= 0.24 + 0.18
= 0.42.

20

Solve $cos(3x)$

$$
= \frac{1}{2} \text{ for } x \in [-\frac{\pi}{2}, \frac{\pi}{2}]
$$

3x = ..., $-\frac{7\pi}{3}, -\frac{5\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, ...$
x = $-\frac{\pi}{9}, \frac{\pi}{9}$.

- 21 The graph of $y = ax^3 + bx + c$ has intercepts $(0,6)$ and $(-2, 0)$ and has a stationary point where $x = 1$. *dy* $\frac{dy}{dx} = 3ax^2 + b.$
	- **a** The graph passes through $(0,6)$. Therefore $6 = c$.
	- **b** The graph passes through $(-2, 0)$. Therefore $0 = -8a - 2b + 6$ (1) There is a stationary point where $x = 1$. Therefore $0 = 3a + b$ (2)
	- c Multiply (2) by 2. $0 = 6a + 2b$ (3)

Add equations (1) and (3). $0 = -2a + 6$ Therefore $a = 3$. Substitute in (2) to find $b = -9$.

22 $y = x^4$ and so $\frac{dy}{dx}$ *dx* $= 4x^3$. The gradient of the line $y = -32x + a$ is −32. $4x^3 = -32$ implies $x^3 = -8$. Hence $x = -2$ For $y = x^4$, when $x = -2$, $y = 16$.
Therefore for the tensor $y = 22$ Therefore for the tangent $y = -32x + a$, $16 = -32 \times (-2) + a$. Hence $a = -48$.

23
$$
f: [-\pi, \pi] \to R
$$
, $f(x) = 4\cos(2x)$.

a Period = $\frac{2\pi}{2} = \pi$ Amplitude $= 4$

24 a Draw a diagram:

716 Math Methods AC Year 11

$$
\frac{\sin(\angle BAC)}{6} = \frac{\sin(30^\circ)}{10}
$$

$$
\sin(\angle BAC) = \frac{6 \sin(30^\circ)}{10}
$$

$$
= 0.3
$$

b Draw a diagram:

 $AC^2 = 20^2 + 20^2 - 2 \times 20 \times 20 \cos(45^\circ)$ $= 800 - 400 \sqrt{2}$

25 **a**
$$
A = \frac{1}{2}r^2\theta
$$

\n $12 = \frac{1}{2} \times 6^2 \times \theta$
\n $\theta = \frac{2}{3}$

b $DC = r_{OD}\theta$ $=(6+3)\times\frac{2}{3}$ 3 $= 6$ $BA = r_{OB}\theta$ $= 6 \times \frac{2}{3}$ 3 $= 4$

 $Perimeter = BD + DC + CA + AB$ $= 3 + 6 + 3 + 4$ $= 16$ cm

$$
A_{OCD} = \frac{1}{2}r_{OD}^2\theta
$$

$$
= \frac{1}{2} \times 9^2 \times \frac{2}{3}
$$

$$
= 27 \text{ cm}^2
$$

$$
A_{OAB} = \frac{1}{2}r_{OB}^2\theta
$$

$$
= \frac{1}{2} \times 6^2 \times \frac{2}{3}
$$

$$
= 12 \text{ cm}^2
$$

Thus,

$$
A_{ABDC} = 27 - 12
$$

$$
= 15 \text{ cm}^2
$$

- 26 a The first ball can be any ball except 1. The probability of a 3, 5 or 7 is $\frac{3}{4}$. 4 There are 3 balls left and the probability of obtaining the white ball is 1 3 . The probability of white on the second = 3 4 $\times \frac{1}{2}$ 3 = 1 4 .
	- b The sum of 8 can be obtained from the following ordered pairs: $(1, 7), (7, 1), (3, 5), (5, 3).$ The probability of each of these pairs = 1 4 $\times \frac{1}{2}$ 3 = 1 12 . Therefore the probability of obtaining a sum of 8 = $4 \times \frac{1}{10}$ 12 = 1 3
	- c We can see that for a sum of 8 we must only consider the pairs $(1, 7), (7, 1), (3, 5), (5, 3)$. The probability that the second is 1 is $\frac{1}{4}$ 4 .
- 27 The line $y = x + 1$ cuts the circle $x^2 + y^2 + 2x - 4y + 1 = 0$ at the points *A* and *B*.

To find the points of intersection:

$$
y = x + 1
$$
 (1)
\n
$$
x^{2} + y^{2} + 2x - 4y + 1 = 0
$$
 (2)
\nSubstitute from (1) into (2)
\n
$$
x^{2} + (x + 1)^{2} + 2x - 4(x + 1) + 1 = 0
$$
\n
$$
x^{2} + x^{2} + 2x + 1 + 2x - 4x - 4 + 1 = 0
$$
\n
$$
2x^{2} - 2 = 0
$$
\n
$$
2(x^{2} - 1) = 0
$$
\n
$$
x = 1 \text{ or } x = -1
$$

The points of intersection are *^A*(1, 2) and *B*(−1, 0).

a The midpoint of $AB = (0, 1)$.

28 Draw a diagram:

29 **a**
$$
4^x - 5 \times 2^x - 24 = 0
$$
.
\nLet $a = 2^x$.
\nThe equation becomes.
\n $a^2 - 5a - 24 = 0$
\n $(a - 8)(a + 3) = 0$
\n $a = 8$ or $a = -3$.
\nNow $2^x > 0$ for all x and so there are no solutions of $2^x = -3$.
\n $2^x = 8$ implies $x = 3$.

b
$$
2^{5-3x} = -4^{x^2} = 0
$$

 $2^{5-3x} = 2^{2x^2}$ We note that if $2^a = 2^b$ then $a = b$. Hence, $5 - 3x = 2x^2$ $2x^2 + 3x - 5 = 0$ $(2x + 5)(x - 1) = 0.$ So, $x = -\frac{5}{2}$ 2 or $x = 1$.

30 $a = 1, d = 5$

To find out how many terms there are, we need to solve: $61 - 1 + 5(n - 1)$

$$
61 = 1 + 5(n-1)
$$

Thus, *n* = 13 terms.

$$
S_{13} = \frac{13}{2} (2 \times 1 + (13 - 1) \times 5)
$$

= 403

31
$$
a = x^2
$$
, $r = x$
\n
$$
\frac{a}{1-r} = \frac{1}{6}
$$
\n2
\n
$$
-2 \times 12 \times 20 \cos(38^\circ + 22^\circ)
$$
\n
$$
6x^2 = 1 - x
$$
\n
$$
6x^2 + x - 1 = 0
$$
\n
$$
(2x + 1)(3x - 1) = 0
$$
\n
$$
x = -\frac{1}{2} \text{ or } \frac{1}{3}
$$

32 $\frac{dy}{dx}$ *dx* $=-4x + k$, where *k* is a constant. $\stackrel{\text{ax}}{\text{Stationary}}$ point at $(1, 5)$. *dy dx* $= 0$ when $x = 1$. $0 = -4 + k$ $k = 4$ Thus, *dy dx* $=-4x + 4$ Integrating with respect to *x*. $y = -2x^2 + 4x + c$. When $x = 1$, $y = 5$. Hence, $5 = -2 + 4 + c$ *c* = 3.
The equation is *y* = $-2x^2 + 4x + 3$.

33
$$
y = ax^3 - 2x^2 - x + 7
$$
 has a gradient of 4,
\nwhen $x = -1$.
\n
$$
\frac{dy}{dx} = 3ax^2 - 4x - 1.
$$
\nTherefore,
\n $4 = 3a + 4 - 1$
\n $a = \frac{1}{3}.$

34 Let
$$
P(x) = 3x^2 + x + 10
$$
.
\n $P(-b) = 3b^2 - b + 10$ and
\n $P(2b) = 12b^2 + 2b + 10$.
\nBy the remainder theorem,
\n $3b^2 - b + 10 = 12b^2 + 2b + 10$
\n $9b^2 + 3b = 0$
\n $3b(3b + 1) = 0$.
\nHence, $b = -\frac{1}{3}$.

35
$$
y = x^3
$$
 and $y = x^3 + x^2 + 6x + 9$
The curves meet where
 $x^3 = x^3 + x^2 + 6x + 9$.
That is,
 $0 = (x + 3)^2$
Thus $x = -3$ and $y = -27$.

For the first curve, *dy dx* $= 3x^2$ and the second, *dy dx* $= 3x^2 + 2x + 6.$ When $x = -3$, $\frac{dy}{dx}$ *dx* = 27 for the first curve. When $x = -3$, $\frac{dy}{dx}$ *dx* = 27 for the second curve. There is a common tangent to the two curves.

36 **a**
$$
y = x^3 - 75x - 10
$$

\n
$$
\frac{dy}{dx} = 3x^2 - 75 = 3(x^2 - 25).
$$
\nStationary points occur when $x = 5$ or $x \neq -5$
\n
$$
\begin{pmatrix}\n-5,240 \\
0 \\
0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\ny = x^3 - 75x - 10 \\
x\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\ny = x^3 - 75x - 10 \\
0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nx = x^3 - 75x - 10 \\
0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nx = x^3 - 75x - 10 \\
0\n\end{pmatrix}
$$

Note that the graph crosses the *y*-axis at -10 .

- **b** $x^3 75x 10 = p$ has more than one real solution when the line with equation $y = p$ crosses the graph of $y = x^3 - 75x - 10$ more than once. This is true when $-260 \le p \le 240$.
- 37 a Maximal domain $\mathbb{R}\setminus\{3\}$.
	- **b** Maximal domain $\mathbb{R}\setminus\{2\}$.
	- ^c Maximal domain (−∞, 2]
	- **d** Maximal domain $[4, \infty)$
	- ^e Maximal domain (−∞, 5)

Solutions to 20B Multiple-choice questions

- **1 B** Period = $2\pi \div \frac{1}{4}$ $\frac{1}{4} = 8\pi$ Amplitude $= 5$
- 2 A $f(x) = x^2 + 2x$ Average rate of change for the interval $[0, 3] =$ *f*(3) − *f*(0) $3 - 0$ = $15 - 0$ 3 $= 5$
- 3 **D** $f: [1, 4) \rightarrow R$, $f(x) = (x 2)^2 + 3$. End points: $f(1) = 4$ and $f(4) = 7$. The minimum value = $f(2) = 3$. The range $= [3, 7)$.
- 4 D A function g with domain R has the following properties:
	- $g'(x) = 3x^2 4x$
	- the graph of $y = g(x)$ passes through the point $(1, 0)$

Taking the anti-derivative of *g* with respect to *x*: $g(x) = x^3 - 2x + c$. Also $g(1) = 0$, so $0 = -1 + c$ $c = 1$. Hence $g(x) = x^3 - 2x + 1$.

5 D Simultaneous equations

 $(m-2)x + y = 0$ (1) $2x + (m-3)y = 0$ (2) Gradient of line $(1) = 2 - m$ Gradient of line $(2) =$ 2 3 − *m* Infinitely many solutions implies $2 - m = \frac{2}{2}$ $\frac{2}{3-m}$.

Hence
$$
(2 - m)(3 - m) = 2
$$

\n $6 - 5m + m^2 = 2$
\n $m^2 - 5m + 4 = 0$
\n $(m - 1)(m - 4) = 0$

 $m = 4$ or $m = 1$. Both lines go through the origin and so there are infinitely many solutions for $m = 4$ or $m = 1$.

- 6 **C** $f(x) = 2 \log_e(3x)$. If $f(5x) = \log_e(y)$ First $f(5x) = 2 \log_e(15x)$. Hence $2 \log_e(15x) = \log_e(y)$ Thus $y = 15x^2 = 225x^2$.
- 7 C A bag contains 2 white balls and 4 black balls. Three balls are drawn from the bag without replacement. Probability of black on the first = 2 3 . There are now 2 white balls and 3 black balls. Probability black on the second = 3 5 . There are now 2 white balls and 2 black balls. Probability of black on the third = 1 2 . Probability of three black = 2 3 $\times \frac{3}{5}$ 5 $\times \frac{1}{2}$ 2 = 1 5 8 A $f: R \to R, f(x) = \frac{1}{3}$ 3 $x^3 - 2x^2 + 1$ $f'(x) = x^2 - 4x = x(x - 4)$ $f'(x) < 0$ if and only if $x(x - 4) < 0$. This happens when the factors have different signs: So either, *^x* < 0 and *^x* > 4 or *^x* > 0 and *^x* < 4. Only the second of these is possible. Hence $0 < x < 4$. This can also be seen by looking at the graph of $y = f'(x)$.
- **9 B** $f(x) =$ √ $2x + 1$ is defined for $2x + 1 > 0$. That is the maximal domain of *f* is $x \geq -\frac{1}{2}$ 2 . In interval notation $[-\frac{1}{2}]$ $\frac{1}{2}$, ∞).
- 10 A In algebraic notation, 11 is four times 9 more than *x* is written as $11 = 4(x + 9)$
- 11 **B** Time taken by the car = $\frac{120}{120}$ *a* hours. Time taken by the train = 120 $\frac{120}{a-4}$. Time taken by the train $=$ time taken by the car $+1$. Therefore, 120 $\frac{120}{a-4}$ 120 *a* + 41 Multiplying both sides of the equation by $a(a - 4)$ we have, $120a = 120(a-4) + a(a-4)$ $120a = 120a - 480 + a^2 - 4a$ $0 = a^2 - 4a - 480$ $0 = (a - 24)(a + 20)$ Therefore $a = 24$ or $a = -20$. But we assume positive speed. 12 A The parabola that passes through the point $(-3, 12)$ and has its vertex at (−2, 8) has equation of the form: $y = k(x + 2)^2 + 8$. It passes through the point $(-3, 12)$. Hence, $12 = k(-1)^2 + 8$ $k = 4$. The equation is $y = 4(x + 2)^2 + 8$. 13 E $\sin \theta = \pm$
Put *O* is a √ $1 - \cos^2 \theta = \pm \cot \theta$ √ $1 - c^2$ 16 A $V = kr^3$ $8 = k(1)^3$ $k = 8$ $V = 8r^3$ $a = 8(2)^3$ $= 64$ $V = 8r^3$ $16 = 8b^3$ $b^3 = 2$ $b = 2^{\frac{1}{3}}$ 3 17 B √ $\frac{0.144 \times 10^5}{2 \times 10^4}$ = = $=\frac{1.2 \times 10^2}{2 \times 10^4}$ $= 0.6 \times 10^{-2}$ $= 6 \times 10^{-3}$

But
$$
\theta
$$
 is acute so $\sin \theta > 0$ and

$$
\sin \theta = \sqrt{1 - c^2}
$$

\n
$$
\sin(2\theta) = 2 \sin(\theta) \cos(\theta)
$$

\n
$$
= 2\sqrt{1 - c^2} \times c
$$

\n
$$
= 2c\sqrt{1 - c^2}
$$

- 14 A $f: [-3, 5) \rightarrow R$, $f(x) = 5 2x$. The graph of *f* is a straight line with negative gradient. $f(-3) = 11$ and $f(5) = -5$. The range is $(-5, 11]$
- **15 E** $f: [-3, 2) \to R$, $f(x) = 2x^2 + 7$.
The graph is a perchala with a The graph is a parabola with a minimum at $(0, 7)$. $f(-3) = 25$ and $f(2) = 15$. The range is [7, 25]

√

√

 $\frac{1.44 \times 10^4}{2 \times 10^4}$

 2×10^4

√ 10⁴

 $\frac{1.2^2 \times}{2 \times 1}$

18 A
$$
F = \frac{k}{R^2}
$$

\n $1400 = \frac{k}{7^2}$
\n $k = 68\ 600$
\n $F = 68\ 600R^{-2}$

19 B
$$
x + 1
$$
 is a factor of $x^2 + ax + b$, then
\t\t\t $-a + b + 7$ equals?
\t\t\tBy the factor theorem,
\t\t\t $1 - a + b = 0$.
\t\t\tThus $-a + b = -1$
\t\t\t $-a + b + 7 = -1 + 7 = 6$

- 20 A The choices are all cubic functions of the form $y = a(x + h)^3 + b$ where $a < 0$. The graph shows a stationary point of inflexion at $(-1, 2)$ Hence it is of the form $y = a(x + 1)^3 + 2$. It passes through the origin.
- 21 B $f: R \to R$, $f(x) = x$. $f(x) - f(-x) = x - (-x) = 2x$.

22 C
$$
a = 4, d = 5
$$

\n
$$
S_{10} = \frac{n}{2}(2a + (n-1)d)
$$
\n
$$
= \frac{10}{2}(2 \times 4 + 9 \times 5)
$$
\n
$$
= 265
$$

23 C
$$
t_n = ar^{n-1} = 3 \times 4^n
$$

 $t_{20} = 3 \times 4^{19}$

24 **D**
$$
t_n = a + (n-1)d
$$

144 = 9 + 15 × d
 $d = 9$

- 25 D Whole function being multiplied by 3: dilation from *x*-axis by factor of 3 Coefficient of *x* is 2: dilation from the *y*-axis by a factor of $\frac{1}{2}$ 2
- 26 C $25^x 7 \times 5^x + 12 = 0$. Let $a = 5^x$ $a^2 - 7a + 12 = 0$ $(a-3)(a-4) = 0$ Hence $a = 3$ or $a = 4$. That is $5^x = 3$ or $5^x = 4$. Therefore, $x = \log_5 3$ or $x = \log_5 4$
- 27 B A particle moves in a straight line so that its position *s* m relative to *O* at a time *t* seconds $(t > 0)$, is given by $s = 4t^3 - 5t - 10$. The velocity $\frac{ds}{dt}$ *dt* $= v = 12t^2 - 5.$ The acceleration = *dv dt* $= 24.$ When $t = 1$, the acceleration is 24 m/s^2 .
- 28 A The average rate of change of the function $y = 2x^4 + x^3 - 1$ between $x = -1$ and $x = 1$ is equal to $2 - 0$ 2 $= 1.$

29 B
$$
\frac{AB}{\sin(C)} = \frac{AC}{\sin(B)}
$$

$$
AB = \frac{12 \sin(180^\circ - 100^\circ - 30^\circ)}{\sin(100^\circ)}
$$

$$
= \frac{12 \sin(50^\circ)}{\sin(100^\circ)}
$$

30 B
$$
V = kw^2
$$

$$
500 = k(10)^2
$$

$$
k = 5
$$

Hence,
\n
$$
1125 = 5w^2
$$

\n $w = 15$
\nHence,
\n $w = 15 \times 10 \times \sin^{-1} 10$

- 31 **B** $A = \frac{1}{2}$ 2 \times 15 \times 10 \times sin(30°) $= 37.5$ cm²
- 32 E A function $f: R \to R$ is such that
	- $f'(x) = 0$ where $x = 3$
	- $f'(x) = 0$ where $x = 5$
	- $f'(x) > 0$ where $3 < x < 5$
	- $f'(x) < 0$ where $x > 5$
	- f'(*x*) < 0 where *x* < 3

Stationary points when $x = 3$ and $x = 5$. Immediately to the left of 3, $f'(x) < 0$ and immediately to the right of 3, $f'(x) > 0$.
Therefore there is a l Therefore there is a local minimum at $x = 3$. Immediately to the left of 5, $f'(x) > 0$ and immediately to the right of 5, $f'(x) < 0$.
Therefore there is a l

Therefore there is a local maximum at $x = 5$.

33 E Number of ways that two girls can be selected from eight: ${}^{8}C_{2}$ Number of ways that two boys can be selected from 12: ${}^{12}C_2$ Hence, number of committees: ${}^{8}C_{2} \times {}^{12}C_{2}$

34 D
$$
(2x - 1)^5 = \sum_{i=0}^{5} {^5C_i (2x)^i (-1)^{5-i}}
$$

The coefficient of x^2 can be found

by letting
$$
i = 2
$$
 in the expression
\n ${}^{5}C_{i}(2)^{i}(-1)^{5-i}$
\n ${}^{5}C_{2}(2)^{2}(-1)^{5-2} = -2^{2} \times ^{5} C_{2}$
\n**35 D** $l = \theta \frac{\pi}{180} \times r$
\n $7 = \frac{18\pi}{180} \times r$
\n70

mm

r =

36 B The tangent at the point $(1, 5)$ on the graph of the curve $y = f(x)$ has equation $y = 4 + x$. The tangent at the point $(3, 6)$ on the curve The transformation is '2 to the right' and '1 up'. So the tangent at the point (3, 6) on the curve $y = f(x - 2) + 1$ is a translation of $y = 4 + x$. It transforms to: *y* − 1 = 4 + *x* − 2. That is, $y = 3 + x$.

37 **D** The graph of the of the derivative function f' of the cubic function with rule $y = f(x)$ crosses the *x* axis at $(1, 0)$ and $(-3, 0)$. The maximum value of the derivative function is 12. $f'(x) = k(x - 1)(x + 3).$ The maximum value of the derivative function is 12. This occurs when $x = 2$. This tells us that $k < 0$ as the quadratic has a maximum. The turning points of the cubic occur at $x = 1$ and $x = -3$. For a local maximum we look where the gradient changes from positive to

negative going from left to right. $f'(x) = k(x - 1)(x + 3).$ For $x < 1$, $f'(x) > 0$ (Remember $k < 0$ For $x > 1$, $f'(x) < 0$. Hence there is a local maximum where $x = 1$.

- **38** A Let $f'(x) = 5g'(x) + 4$ and $f(1) = 5$ and $g(x) = x^2 f(x)$. We have $f(x) = 5g(x) + 4x + c$ and $f(1) = 5$ and $g(1) = f(1) = 5$ So $5 = 25 + 4 + c$. Hence $c = -24$. Finally, $f(x) = 5g(x) + 4x - 24$
- 39 C Identify the incorrect statement by checking each one at a time. This can be done by inputting each one of the statements, one at a time, into the CAS calculator to verify if they are true or false.
- 40 A Start with $y = f(x)$ Reflection in the *y*-axis: replace x with $-x(y = f(-x))$ Dilation of factor 2 from the *x*-axis: x^2 replace *y* with $\frac{y}{2}$ $\overline{2}$ (*y* 2 $= f(-x)$ Translation of $\overline{2}$ units up: replace *y* with $y - 2($ *y* − 2 2 $= f(-x)$ $y = 2f(-x) + 2$

41 C
$$
a = 1, r = \frac{1}{2}
$$

\n
$$
S = \frac{a}{1-r}
$$
\n
$$
= \frac{1}{1-\frac{1}{2}}
$$
\n
$$
= 2
$$
\n42 D
$$
S_n = \frac{n}{2}(2a + (n-1)d)
$$
\n
$$
100 = \frac{n}{2}(2 \times 1 + (n-1) \times 2)
$$
\n
$$
200 = n(2 + 2n - 2)
$$
\n
$$
200 = n(2n)
$$
\n
$$
2n^2 = 200
$$
\n
$$
n = 10
$$

$$
t_{10} = 1 + (10 - 1)2
$$

= 19

$$
43
$$

$$
d^{2} = SX^{2} + XE^{2} - 2 \times SX \times XE \times \cos(\angle SXE)
$$

= 100² + 50² - 2 × 100 × 50 × cos(45°)
= 12 500 - 5000 $\sqrt{2}$
 $d \approx 74 \text{ km}$

Solutions to 20C Extended-response questions

1 **a** i Gradient of
$$
AB = \frac{16 - b^2 - 16}{b}
$$

\n $= -b$
\n**ii** $f'(x) = -2x$
\nThe tangent at point $(x, f(x))$ has gradient $-2x$
\n $-2x = -b$
\n $x = \frac{b}{2}$
\nThe tangent at the point where $x = \frac{b}{2}$ has gradient $-b$.
\n**b** i Area of a trapezium $= \frac{h}{2}(a + b)$
\n $S(b) = \frac{b}{2}(16 - b^2 + 16)$
\n $= \frac{b}{2}(32 - b^2)$
\n**ii** $\frac{b}{2}(32 - b^2) = 28$
\n $32b - b^3 = 56$
\n $b^3 - 32b + 56 = 0$
\n $(b - 2)(b^2 + 2b - 28) = 0$
\n $b = 2 \text{ or } (b + 1)^2 = 29$
\nThus $S(2) = 28$.
\nThe other solutions of the equation are not in the interval (0, 4).
\nThe area of the trapezium is 28 when $b = 2$.

2
$$
f(x) = (\sqrt{x} - 2)^2(\sqrt{x} + 1)^2
$$

- a To find the *x*-intercept *f*(*x*) = 0 implies $\sqrt{x} - 2 = 0$ or $\sqrt{x} + 1 = 0$ Thus $\sqrt{x} - 2 = 0$ which implies $x = 4$. Therefore $a = 4$.
- **b** From the graph there is a local maximum at $x = \frac{1}{4}$ $\frac{1}{4}$ and a local minimum at $A(4, 0)$. The graph has negative gradient for the interval $\left(\frac{1}{4}\right)$ $\frac{1}{4}, 4)$

$$
3 \quad \mathbf{a} \quad v = 4t - 6
$$

Find an expression for *x* the position at time *t* by finding the antiderivative. $x = 2t^2 - 6t + c$ When $t = 0$, $x = 0$ and therefore $c = 0$. $x = 2t^2 - 6t$

b $x(3) = 18 - 18$

 $= 0$

The body has returned to *O* after 3 seconds.

c The average velocity $=$ $\frac{\text{change in position}}{\text{change in position}}$ change in time $= 0$ cm/s

d Body reverses direction when $v = 0$.

 $4t - 6 = 0$ $t =$ 3 2 $x\left(\frac{3}{2}\right)$ 2 $= 2 \times \frac{9}{4}$ 4 $-6 \times \frac{3}{2}$ 2 $=-\frac{9}{2}$ 2 . The particle returns to *O* at $t = 3$. The total distance travelled = 9 centimetres.

e Average speed =
$$
\frac{9}{3}
$$
 = 3 centimetres/second.

a
$$
16x + 2y + 2y + 10x + 10x = 52
$$

 $36x + 4y = 52$
 $4y = 52 - 36x$
 $y = 13 - 9x$

b Using Pythagoras' theorem.

 $Heights = 6x$ cm

$$
A(x) = \frac{6x}{2}(2y + 16x + 2y)
$$

= 3x(4y + 16x)
= 3x(52 - 36x + 16x)
= 156x - 60x²

(Using the formula for the area of a trapezium)

= 3*x*(52 − 36*x* + 16*x*) (Substituting for *y* from part a)

c Finding the derivative:

 $A'(x) = 156 - 120x$ $A'(x) = 0$ implies $x =$ 13 10 . A maximum occurs at this value as $A(x) = 156x - 60x^2$ is a quadratic with negative coefficient of x^2 . Substituting for *x* in $y = 13 - 9x$ gives $y = \frac{13}{10}$ 10 .

5 a Total area of the two squares $= x^2 + y^2$ $x \leq y$ Total length of fencing $= 2x + 3y$ Given that the length of the fencing is 5200 m $x + 3y = 5200$ $3y = 5200 - 2x$ *y* = 5200 − 2*x*

Therefore the total area,

3 $x^2 + \left(\frac{5200 - 2x}{2}\right)$ 3 χ^2

$$
\mathbf{b}
$$

b
$$
A = x^2 + \frac{5200^2}{9} - \frac{20800x}{9} + \frac{4x^2}{9}
$$

\n
$$
= \frac{13x^2}{9} - \frac{20800x}{9} + \frac{5200^2}{9}
$$

\n
$$
A'(x) = \frac{26x}{9} - \frac{20800}{9}
$$

\n
$$
A'(x) = 0 \text{ implies } x = 800
$$

\nThe parabola has positive coefficient of x^2 and
\ntherefore a minimum when $x = 800$.
\nWhen $x = 800$ substituting in $y = \frac{5200 - 2x}{3}$ gives $y = 1200$.
\nThus, substituting these values into the area formula gives a minimum area of
\n $2080\,000 \text{ m}^2$

c
$$
x \ge 0
$$
 and $x \le y$
\nSubstitute $y = \frac{5200 - 2x}{3}$
\n
$$
\frac{5200 - 2x}{3} \ge x
$$

\n
$$
5200 - 2x \ge 3x
$$

\n
$$
5200 \ge 5x
$$

\n
$$
x \le 1040
$$

$$
\begin{array}{r}\n \stackrel{\cancel{\hspace{1em}}{1.040}}{0} \\
 \hline\n \stackrel{\cancel{\hspace{1em}}{27040000}}{0} \\
 \hline\n \stackrel{\cancel{\hspace{1em}}{27040000}}{0} \\
 \hline\n \stackrel{\cancel{\hspace{1em}}{2800}}{0} \\
 \hline\n \stackrel{\cancel{\hspace{1em}}{2600}}{0} \\
 \hline\n \stackrel{\cancel{\hspace{1em}}{20000000}}{0} \\
 \hline\n \stackrel{\cancel{\hspace{1em}}{290000000}}{0} \\
 \hline\n \end{array}
$$

6
$$
f(x) = -x^3 + ax^2
$$
.
\n $f'(x) = -3x^2 + 2ax$

a i *f* has negative gradient for $f'(x) < 0$

$$
-3x2 + 2ax < 0
$$

$$
-x(3x - 2a) < 0
$$

$$
x < 0 \text{ or } x > \frac{2a}{3}
$$

- ii *f* has positive gradient for $f'(x) > 0$
2*a* $0 < x <$ 2*a* 3
- **b** When $x = a$,

$$
f'(a) = -3a^2 + 2a^2
$$
 and $f(a) = 0$
= $-a^2$

The equation of the tangent at the point $(a, f(a))$

$$
y - f(a) = f'(a)(x - a)
$$

Thus, $y = -a^2(x - a)$
c The gradient of the normal = $-\frac{1}{2}$

The equation of the normal is

$$
y = \frac{1}{a^2}(x - a)
$$

7 a

1 $f'(a)$

a 2

b Table showing sums

	$\overline{0}$	$\overline{2}$	4	6	8	10
		3	5	7	9	11
3	3	5	7	9	11	13
5	5	7	9	11	13	15
7		9	11	13	15	17
9	9	11	13	15	17	19
11	11	13	15	17	19	21

Let *X* be the sum of the results.

i
$$
Pr(X = 1) = \frac{1}{36}
$$

\nii $Pr(X = 13) = \frac{5}{36}$
\niii $Pr(X = 9) = \frac{5}{36}$
\n**c** $Pr(X = 15|X > 7) = \frac{Pr(X = 15)}{Pr(X > 7)} = \frac{2}{13}$

8 **a** i $a = 50,000$

 $d = 5000$

ii Let $t_n = 100000$ $100\ 000 = 50\ 000 + (n-1) \times 5000$ $50\,000 = 5000(n-1)$ $10 = n - 1$ $n = 11$

Production is doubled in the $11th$ month.

iii $S_{36} = \frac{36}{2}$ 2 $(2 \times 50\,000 + (36 - 1) \times 5000)$ $= 4950000$

In the first 36 months, 4 950 000 litres will be produced.

b i $a = 12000$

 $r = 1.1$

ii $S_{12} = \frac{12\ 000(1-1.1^{12})}{1\ 1\ 1\ 1}$ $1 - 1.1$ $= 256 611.405207$

The total amount of drink produced in the first 12 months is 256 611 litres.

- c Solve $12\,000 \times 1.1^{n-1} > 5000(n-1) + 50\,000$ which gives $n > 30.345$. Hence, production becomes faster in the 31st month.
- 9 a For function to be defined $x 2a \ge 0$. That is $x \ge 2a$.
	- b √ *x* − 2*a* = *x* $x - 2a = x^2$ Squaring both sides $x^2 - x + 2a = 0$ $x^2 - x + \frac{1}{4}$ 4 $=-2a+\frac{1}{4}$ 4 Completing the square $\left(x-\frac{1}{2}\right)$ 2 $\Big)^2 =$ −8*a* + 1 4 $x =$ 1 2 + √ 1 − 8*a* 2 or $x =$ 1 2 − √ 1 − 8*a* 2

c The equation $f(x) = x$ has one solution for $a = \frac{1}{2}$ 8

- 10 a Probability that Frederick goes to the library on each of the next three nights $= 0.7 \times 0.7 \times 0.7$
	- $= 0.343$

 $= 0.399$

- b The possible sequences for 3 days for exactly two days going to the library: LSLL LLSL LLLS Probability of exactly two nights $= 0.3 \times 0.6 \times 0.7 + 0.7 \times 0.3 \times 0.6 + 0.7 \times 0.7 \times 0.3$ $= 0.126 + 0.126 + 0.147$
- 11 a Probability that sticks are brought from Platypus for the next three years
	- $= 0.75 \times 0.75 \times 0.75$
= 0.4219 (correct (correct to four decimal places.)
	- b The possible sequences for three years for exactly two years buying from Platypus PNPP PPNP PPPN Probability of buying from Platypus for exactly two of the three years $= 0.25 \times 0.2 \times 0.75 + 0.75 \times 0.25 \times 0.2 + 0.75 \times 0.75 \times 0.25$
= 0.2156 (correct to four decimal places.) (correct to four decimal places.)
		-
	- c Probability that they will buy from Platypus in the third year is 0.6125

12 Draw a diagram:

Hence, $\angle AOB = 2 \cos^{-1} \left(\frac{8}{10} \right)$

The minor segment cut off by the chord *AB* now be found:

.

$$
A = \frac{1}{2}r^2(\theta - \sin(\theta))
$$

= $\frac{1}{2} \times 10^2 \times (2 \cos^{-1}(\frac{8}{10}) - \sin[2 \cos^{-1}(\frac{8}{10})])$
= 16.3501108793
The total area is thus 16.35 × 2 = 32.7 cm²

The total area is thus $16.35 \times 2 = 32.7 \text{ cm}^2$

- 13 a The line has negative gradient. The range = $[-mb + 3, -ma + 3]$
	- b The coordinates of the midpoint are found by using the midpoint of the line segment joining (x_1, y_1) to (x_2, y_2) are $\left(\frac{x_1 + x_2}{2}\right)$ 2 , *y*¹ + *y*² 2 \backslash The midpoint of $AB = \left(\frac{a+b}{2}\right)$ 2 , −*ma* − *mb* + 6 2 $\overline{}$

1 *m*

- c Gradient line through $AB = -m$ Gradient of a line perpendicular to *AB* = $y - \left(\frac{-ma - mb + 6}{2}\right)$ 2 $=$ 1 *m* $\left(x - \left(\frac{a+b}{2}\right)\right)$ 2 \mathcal{U} $2my + m^2a + m^2b - 6m = 2x - (a + b)$ $2my - 2x = -m^2(a + b) + 6m - (a + b)$
- d The transformation is defined by $(x, y) \rightarrow (x 3, y + 5)$. If $(x, y) \rightarrow (x', y')$ then
 $x' = x - 3$ and $y' = y + 3$ $x' = x - 3$ and $y' = y + 5$

Hence, $x = x' + 3$ and $y = y' - 5$ Substituting in $y = -mx + 3$ gives $y' - 5 = -m(x' + 3) + 3$

 $y' = -mx' - 3m + 8$ The equation of the image is $y = -mx - 3m + 8$ Considering the end points: $(a, -ma + 3)$ → $(a − 3, -ma + 8)$ and $(b, -mb + 3) \rightarrow (b - 3, -mb + 8).$

e The transformation is defined by $(x, y) \rightarrow (-x, y)$. If $(x, y) \rightarrow (x', y')$ then
 $x' = y$ and $y' = y$. $x' = -x$ and $y' = y$ The line is transformed to $y' = mx' + 3$. That is, $y = mx + 3$

Considering the end points:

 $(a, -ma + 3)$ → $(-a, -ma + 3)$ and $(b, -mb + 3)$ → $(-b, -mb + 3)$.

f If $a = 0$ the midpoint of AB has coordinates $\left(\frac{b}{2}\right)$ $2,$ −*mb* + 6 2 \backslash Thus $\frac{b}{2}$ 2 $= 6$ and $\frac{-mb + 6}{2}$ 2 $=-4$ Hence $b = 12$ and $m =$ 7 6

14 a
$$
f(x) = (p-1)x^2 + 4x + (p-4)
$$

ii When $p = 2$, $f(x) = x^2 + 4x - 2$
For the *x* existinted property: For the *x* axis intercepts:

$$
x^{2} + 4x - 2 = 0
$$

\n
$$
x^{2} + 4x + 4 = 6
$$

\n
$$
(x + 2)^{2} = 6
$$

\n
$$
x = -2 + \sqrt{6} \text{ or } x = -2 - \sqrt{6}
$$

b $f'(x) = 2(p-1)x + 4$ $f'(x) = 0$ implies $x =$ 2 1 − *p* and $f\left(\frac{2}{1}\right)$ 1 − *p* $= (p - 1) \times \frac{4}{4}$ $\frac{1}{(1-p)^2}$ + 8 1 − *p* + (*p* − 4) = 4 $\frac{1}{(p-1)} +$ 8 1 − *p* + (*p* − 4) = −4 (*p* − 1) + (*p* − 4) = *p* ² − 5*p p* − 1

The coordinates of the turning point are $\left(\frac{2}{1}\right)$ $1 - p$ [,] *p* ² − 5*p p* − 1 \backslash

- c The turning point lies on the *x* axis when the *y* coordinate is zero. That is, when $5p - p^2 = 0$. $p = 0$ or $p = 5$
- d The discriminant of the quadratic $(p-1)x^2 + 4x + (p-4)$ is

$$
16 - 4(p - 1)(p - 4) = 16 - 4[p2 - 5p + 4]
$$

$$
= -4p2 + 20p
$$

There are two solutions when the discriminant is positive. That is, when $-4p^2 + 20p > 0$
Equivalently when $n^2 - 5p \leq 0$ Equivalently when $p^2 - 5p < 0$
Thus $0 \le p \le 5$ and $p \ne 1$ Thus $0 < p < 5$ and $p \neq 1$.

e The question should ask to sketch the graph of $y = g(x)$ and the graph of the reflection in the *y*-axis.

15 $h(t) = 2.3 \cos(kt)$

a High tide occurs every 12 hours $\frac{2\pi}{k}$ $= 12$ $k = \frac{1}{6}$ **b** $h(1.5) = 2.3 \cos\left(\frac{\pi}{6} \times 1.5\right)$

$$
= 2.3 \cos\left(\frac{\pi}{4}\right)
$$

$$
= 2.3 \times \frac{1}{\sqrt{2}}
$$

This is measured in metres

Thus the height of the road above mean sea level is:

$$
2.3 \times \frac{1}{\sqrt{2}} \text{ metres } = 1.15 \sqrt{2} \times 100 \text{ cm}
$$

$$
= 115 \sqrt{2} \text{ cm}
$$

c $h(1.5) = 2.3 \cos\left(\frac{\pi}{6}\right)$ $\overline{}$ $= 2.3 \times$ √ 3 2

Thus the height of the raised footpath above mean sea level is: ².³ [×] $\sqrt{3}$

$$
2.3 \times \frac{\sqrt{3}}{2}
$$
 metres = 1.15 $\sqrt{3} \times 100$ cm
= 115 $\sqrt{3}$ cm